架空輸電線路防雷措施
架空輸電線路是電力網及電力系統的重要組成部分。由于它暴露在自然之中,故極易受到外界的影響和損害,其中最主要的一個方面是雷擊。架空輸電線路所經之處大都為曠野或丘陵、高山,輸電線路長,遭遇雷擊的機率較大。
架空輸電線路雷害事故的形成通常要經歷這樣四個階段:輸電線路受到雷電過電壓的作用:輸電線路發生閃絡;輸電線路從沖擊閃絡轉變為穩定的工頻電壓;線路跳閘,供電中斷。針對雷害事故形成的四個階段,現代輸電線路在采取防雷保護措施時,要做到“四道防線”,即:
1防直擊,就是使輸電線路不受直擊雷。
2防閃絡,就是使輸電線路受雷后絕緣不發生閃絡。
3防建弧,就是使輸電線路發生閃絡后不建立穩定的工頻電弧。
4防停電,就是使輸電線路建立工頻電弧后不中斷電力供應。
架空輸電線路防雷的具體措施
現對生產運行部門常用的架空輸電線路防雷改進措施簡述如下:
1架設避雷線
架設避雷線是輸電線路防雷保護的最基本和最有效的措施。避雷線的主要作用是防止雷直擊導線,同時還具有以下作用:
1)分流作用,以減小流經桿塔的雷電流,從而降低塔頂電位;
2)通過對導線的耦合作用可以減小線路絕緣子的電壓;
3)對導線的屏蔽作用還可以降低導線上的感應過電壓。
通常來說,線路電壓愈高,采用避雷線的效果愈好,而且避雷線在線路造價中所占的比重也愈低。因此,110kV及以上電壓等級的輸電線路都應全線架設避雷線。
同時,為了提高避雷線對導線的屏蔽效果,減小繞擊率,避雷線對邊導線的保護角應做得小一些,一般采用20°~30°。220kV及330kV雙避雷線線路應做到20°左右,500kV及以上的超高壓、特高壓線路都架設雙避雷線,保護角在15°左右。
2安裝避雷針
安裝避雷針也是架空輸電線路常用的一種防雷措施。
但是在實際應用卻存在以下問題:
1)由于避雷針而導致雷擊概率增大
2)保護范圍小
國內外不少防雷專家,對避雷針能向被保護物有多大的保護距離做了系統的研究得出的結論是:“對一根垂直避雷針無法獲得十分肯定的保護區域”。英國的BS6551法規曾指出:“經驗顯示不能依賴避雷針提供任何保護區內的完整保護”。而德國防雷法規則有意識地不引入避雷針保護范圍的概念。從避雷針因側擊雷、繞擊雷,造成事故的實例來分析,其保護范圍是不十分肯定的。
由于避雷針的引雷作用,所以雷擊次數就會提高,當雷電被吸引到針上,在強大的雷電流沿針而流入大地過程中,雷電流周圍形成的磁場會產生截應過電壓,它與雷電流的大小及變化速度成正比,與雷擊的距離成反比。而被保護物的自然屏蔽裝置對電磁感應或電磁干擾的屏蔽作用,不能達到有效屏蔽,使被保護區內的弱電設備因感應過電壓而損壞。
4)反擊的危害
當雷電被吸引到針上,將有數千安的高頻電流通過避雷針及其接地引下線和接地裝置,此時針和引線的電壓很高,若針對被保護物之間的距離小于安全距離時,會由針及引下線向被保護物發生反擊,損壞被保護物。我國國標規定針距被保護物的空氣中距離≥5米,針距被保護物的接地裝置間的地中距離Sd≥3米,針對這一要求,微波塔和電視發射塔的各種天線上的避雷針是難以滿足規范的要求。
5)電磁感應問題
在強大的雷電流沿避雷針向下流入地中的過程中,會在周圍產生強大的電磁場,它會使微波通信、計算機等設備產生誤動。強大的電磁場,可以使金屬開口環或打包用鐵箍的接觸不良處發生放電,從而引燃引爆易燃易爆物。更常見的則是引起微電子設備(通信設備,計算機設備等)的失靈與損壞。受雷擊的針及引線,在高頻雷電流作用下,將從接觸點至地面產生一個較高的接觸電壓。當雷電流流入大地擴散時,在入地點沿半徑各點形成不同的電位,若跨入該區域會產生很高的跨步電壓。在測避雷針不適用于對弱電設備的保護,更不易用于易燃易爆品的防雷保護。因它引來強大的雷電流在接地引線斷線卡處易產生火花,還會在附近的金屬開口環處產生火花,從而引起事故。
3加強線路絕緣
由于輸電線路個別地段需采用大跨越高桿塔(如:跨河桿塔),這就增加了桿塔落雷的機會。高塔落雷時塔頂電位高,感應過電壓大,而且受繞擊的概率也較大。為降低線路跳閘率,可在高桿塔上增加絕緣子串片數,加大大跨越檔導線與地線之間的距離,以加強線路絕緣。在35kV及以下的線路可采用瓷橫擔等沖擊閃絡電壓較高的絕緣子來降低雷擊跳閘率。。
4采用差絕緣方式
此措施適宜于中性點不接地或經消弧線圈接地的系統,并且導線為三角形排列的情況。所謂差絕緣,是指同一基桿塔上三相絕緣有差異,下面兩相較之最上面一相各增加一片絕緣子,當雷擊桿塔或上導線時,由于上導線絕緣相對較“弱”而先擊穿,雷電流經桿塔人地,避免了兩相閃絡。湖南郴州電業局和包頭供電局在雷害嚴重的一些35kV線路上應用了這一方法,收到了事故率明顯下降的效果。據計算,采用差絕緣后,線路的耐雷水平可提高24%。
5采用不平衡絕緣方式
在現代高壓及超高壓線路上,同桿架設的雙回路線路日益增多,對此類線路在采用通常的防雷措施尚不能滿足要求時,可考慮采用不平衡絕緣方式來降低雙回路雷擊同時跳閘率,以保障線路的連續供電。不平衡絕緣的原則是使雙回路的絕緣子串片數有差異,這樣,雷擊時絕緣子串片數少的回路先閃絡,閃絡后的導線相當于地線,增加了對另一回路導線的耦合作用,提高了線路的耐雷水平使之不發生閃絡,保障了另一回路的連續供電。
6藕合地埋線
藕合地埋線可起兩個作用,一是降低接地電阻,《電力工程高壓送電線路設計手冊》指出:連續伸長接地線是沿線路在地中埋設1—2根接地線,并可與下一基塔的桿塔接地裝置相連,此時對工頻接地電阻值不作要隸_國內外的運行經驗證明,它是降低高土壤電阻率地區桿塔接地電阻的有效措施之一。二是起一部分架空地線的作用,既有避雷線的分流作用,又有避雷線的藕合作用。據有的單位的運行經驗,在一個20基桿塔的易擊段埋設藕合地埋線后,10年中只發生一次雷擊故障,有文獻介紹可降低跳閘率40%,顯著提高線路耐雷水平。
7預放電棒與負角保護針
預放電棒的作用機理是減小導、地線間距,增大藕合系數,降低桿塔分流系數,加大導線、絕緣子串對地電容,改善電壓分布;負角保護針可看成裝在線路邊導線外側的避雷針,其目的是改善屏蔽,減小臨界擊距。預放電棒與負角保護針常一起裝設,這一方法曾在廣東、貴州等地采用,有一定的效果。制作、安裝和運行維護方便,以及經濟花費不多是其特點。
8裝設消雷器
消雷器是一種新型的直擊雷防護裝置,在國內已有十余年的應用歷史,目前架空輸電線路上裝設的消雷器已有上千套,運行情況良好。雖然對消雷器的機理和理論還存在懷疑和爭論,但它確實能消除或減少雷擊的事實已被越來越多的人承認與接受。消雷器對接地電阻的要求不嚴,其保護范圍也遠比避雷針大。在實際裝設時,應認真解決好有關的各個環節中的問題。
9使用接地降阻劑
近幾年來國內一些單位在處理接地時使用了降阻劑,取得了較好的降阻效果,介紹降阻劑的文章也不少,降阻劑確實熱極一時。據有關資料介紹,降阻劑使用后接地電阻隨時間的推移而下降,并且由于其PH值一般均在7.6一8.5之間,有的呈中性略偏堿,對接地體有鈍化保護作用,故基本無腐蝕現象。但是,使用較長時間表明接地降阻劑對接地體產生了嚴重的腐蝕。故在采用這一方法時應關注長期的效果,特別是對接地體的腐蝕問題。
10采用中性點非有效接地方式
在我國35kV及以下電力系統中采用中性點不接地或經消弧線圈接地的方式。這樣可使由雷擊引起的大多數單相接地故障能夠自動消除,不致引起相間短路和跳閘。而在二相或三相落雷時,由于先對地閃絡的一相相當于一條避雷線,增加了分流和對未閃絡相的耦合作用,使未閃絡相絕緣上的電壓下降,從而提高了線路的耐雷水平。因此,對35kV線路的鋼筋混凝土桿和鐵塔,必須做好接地措施。
總之,影響架空輸電線路雷擊跳閘率的因素很多,有一定的復雜性,解決線路的雷害問題,要從實際出發,因地制宜,綜合治理。在采取防雷改進措施之前,要認真調查分析,充分了解地理、氣象及線路運行等各方面的情況,核算線路的耐雷水平,研究采用措施的可行性、工作量、難度、經濟效益及效果等,最后來決定準備采用某一種或幾種防雷改進措施。
篇2:輸電線路防雷技術措施
隨著國民經濟的發展與電力需求的不斷增長,電力生產的安全運行問題也越來越突出。對于輸電線路來講,雷擊跳閘一直是影響高壓輸電線路供電可靠性的重要因素。由于大氣雷電活動的隨機性和復雜性,目前世界上對輸電線路雷害的認識研究還有諸多未知的成分。進行高壓輸電線路設計時要全面考慮,綜合分析每一條線路的具體情況,通過安全、經濟、質量比較,選取有針對性的防雷設計技術措施,以達到提高供電可靠性的目的。
一防雷的原則
線路防雷保護首先在于抓好基礎工作,目前國內外在雷電防護手段上并沒有出現根本的變化,很大程度上要依賴傳統的技術措施,只要運用得好,仍然是可以信賴的。對已投運的線路,應結合地區的地貌、地形、地質以及土壤狀況與接地電阻的合理水平給出正確的評價,找出可能存在薄弱環節或缺陷,因地制宜地采取措施。
二雷擊跳閘分析
高壓輸電線路遭受雷擊的事故主要與四個因素有關:線路絕緣子的50%放電電壓;有無架空地線;雷電流強度;桿塔的接地電阻。高壓輸電線路各種防雷措施都有其針對性,因此,在進行高壓輸電線路設計時,我們選擇防雷方式首先要明確高壓輸電線路遭雷擊跳閘原因。
2.1高壓輸電線路繞擊成因分析
根據高壓輸電線路的運行經驗、現場實測和模擬試驗均證明,雷電繞擊率與避雷線對邊導線的保護角、桿塔高度以及高壓輸電線路經過的地形、地貌和地質條件有關。對山區的桿塔,我們的計算公式是:?
山區高壓輸電線路的繞擊率約為平地高壓輸電線路的3倍。山區設計輸電線路時不可避免會出現大跨越、大高差檔距,這是線路耐雷水平的薄弱環節;一些地區雷電活動相對強烈,使某一區段的線路較其它線路更容易遭受雷擊。
2.2高壓輸電線路反擊成因分析
雷擊桿、塔頂部或避雷線時,雷電電流流過塔體和接地體,使桿塔電位升高,同時在相導線上產生感應過電壓。如果升高塔體電位和相導線感應過電壓合成的電位差超過高壓輸電線路絕緣閃絡電壓值,即Uj>U50%時,導線與桿塔之間就會發生閃絡,這種閃絡就是反擊閃絡。我們知道,
由以上公式可以看出,降低桿塔接地電阻Rch、提高耦合系數k、減小分流系數β、加強高壓輸電線路絕緣都可以提高高壓輸電線路的耐雷水平。在實際設計中,我們著重考慮降低桿塔接地電阻Rch和提高耦合系數k的方法作為提高線路耐雷水平的主要手段。
三高壓輸電線路防雷措施
清楚了輸電線路雷擊跳閘的發生原因,我們就可以有針對性的對設計中輸電線路經過的不同地段,不同地理位置的桿塔采取相應的防雷措施。
3.1加強高壓輸電線路的絕緣水平。高壓輸電線路的絕緣水平與耐雷水平成正比,加強零值絕緣子的檢測,保證高壓輸電線路有足夠的絕緣強度是提高線路耐雷水平的重要因素。我們在設計高壓線路時充分比較各種絕緣子的性能,分析其特性,認為玻璃絕緣子有較好的耐電弧和不易老化的優點,并且絕緣子本身具有自潔性能良好和零值自爆的特點。特別是玻璃是熔融體,質地均勻,燒傷后的新表面仍是光滑的玻璃體,仍具有足夠的絕緣性能,所以設計中我們多考慮采用玻璃絕緣子。
3.2降低桿塔的接地電阻。高壓輸電線路的接地電阻與耐雷水平成反比,根據各基桿塔的土壤電阻率的情況,盡可能地降低桿塔的接地電阻,這是提高高壓輸電線路耐雷水平的基礎,是最經濟、有效的手段。對于土壤電阻率較高的疑難地區的線路,則應跳出原有設計參數的框框,特別是要強化降阻手段的應用,如增加埋設深度,延長接地極的使用,就近增加垂直接地極的運用,使用降阻劑等。
3.3根據規程規定:在雷電活動強烈的地區和經常發生雷擊故障的桿塔和地段,可以增設耦合地線。由于耦合地線可以使避雷線和導線之間的耦合系數增大,并使流經桿塔的雷電流向兩側分流,從而提高高壓輸電線路的耐雷水平。
3.4適當運用高壓輸電線路避雷器。由于安裝避雷器使得桿塔和導線電位差超過避雷器的動作電壓時,避雷器就加入分流,保證絕緣子不發生閃絡。根據實際運行經驗,在雷擊跳閘較頻繁的高壓輸電線路上選擇性安裝避雷器可達到很好的避雷效果。目前我公司在35kV輸電線路中根據運行經驗,在無避雷線的特定地段安裝了一定數量的高壓輸電線路避雷器,運行反映較好,但由于裝設避雷器投資較大,我們只能根據特殊情況少量使用。
四其它方面
我們在進行輸電線路設計時還應注意以下幾點:
4.1在選擇高壓輸電線路路徑時,應盡量避開雷電多發區或對防雷不利的地方;對于易受雷擊的桿塔接地,要盡量降低接地電阻。
4.2在選擇避雷方式時也要充分考慮本地區的防雷經驗及特點,選用合適的避雷方法;
4.3對于雷擊多發區也應當減少大檔距段的設計和在規程允許的范圍內降低塔高。
4.4加強高壓輸電線路的驗收。對于新投產的高壓輸電線路,做好高壓輸電線路的驗收工作,抽查接地體的埋深是否符合規程的要求,射線長度是否達到設計的長度,接地體與接地引下線是否有可靠的電氣連接,這些都是保證桿塔可靠防雷基礎。
4.5對已投運的線路,生產單位要加大對老舊線路的投資和改造力度,對運行中發現問題較多的線路、雷擊頻發區段,要集中人力、資金,盡快進行改造。
五結束語
在總結了輸電線路防雷工作存在的問題和如何運用好常規防雷技術措施的基礎上,我們認為雷電活動是小概率事件,隨機性強,要做好輸電線路的防雷工作,就必須抓住其關鍵點。綜上所述,為防止和減少雷害故障,設計中我們要全面考慮高壓輸電線路經過地區雷電活動強弱程度、地形地貌特點和土壤電阻率的高低等情況,還要結合原有高壓輸電線路運行經驗以及系統運行方式等,通過比較選取合理的防雷設計,提高高壓輸電線路的耐雷水平。雷電活動是一個復雜的自然現象,需要電力系統內各個部門的通力合作,才能盡量減少雷害的發生,將雷害帶來的損失降低到最低限度。
篇3:輸電線路防雷技術措施
隨著經濟的發展,對輸電線路供電可靠性的要求越來越高。同時伴隨著電網的發展,雷擊輸電線路引起的跳閘、停電事故絕對值也日益增多。據電網故障分類統計表明,在我國跳閘率較高的地區,高壓線路運行的總跳閘次數中,由于雷擊原因的事故次數約占(50~70)%。尤其是在多雷、土壤電阻率高、地形復雜的山區,雷擊輸電線路引起的事故率更高,帶來巨大的損失。要保障線路安全運行;應對雷害原因進行有效的分析,確定雷擊性質,并采取相應有效的防雷措施。
1雷害原因分析
輸電線路雷擊閃電是由雷云放電造成的過電壓通過線路桿塔建立放電通道,導致線路絕緣擊穿,這種過電壓也稱為大氣過電壓,可分為直擊雷過電壓和感應雷過電壓。雷擊主要是通過建立一個放電泄流通道,從而使大地感應電荷中和雷云中的異種電荷,因此雷擊和接地裝置的完好性有直接的關系。
輸電線路感應雷過電壓最大可達到400kV左右,它對35KV及以下線路絕緣威脅很大,但對于110kV及以上線路絕緣威脅很小,110kV及以上輸電線路雷擊故障多由直擊雷引起,并且同接地裝置的完好性有直接的關系。直擊雷又分為反擊和繞擊,都嚴重危害線路安全運行。在采取各種防雷措施之前,應該對雷擊性質進行有效分析,準確分析每次線路故障的閃絡類型,采用針對性強的防雷措施,才能達到很好的防雷效果。
反擊雷過電壓是雷擊桿頂和避雷線出現的雷過電壓,主要與絕緣強度和桿塔接地電阻有關,一般發生在絕緣弱相,無固定閃絡相別,所以對于反擊雷過電壓應采取降低桿塔接地電阻,加強絕緣,提高耐雷水平。繞擊雷過電壓是雷電繞過避雷線直接擊中導線而出現的雷過電壓,主要與雷電流幅值,線路防雷保護方式,桿塔高度,特殊地形有關,主要發生在兩邊相。目前對繞擊雷過電壓采取的主要措施是減少避雷線保護角,安裝避雷器等。
實際運行經驗表明:山區線路由于地形因素的影響和有效高度的增加,繞擊率較高;平原,丘陵地區的線路則以反擊為主。山區線路選擇良好的防雷走廊,減小避雷線保護角,加強絕緣是最有效的防雷措施。對于平原,丘陵地區的線路降低按地電阻是最有效的防雷措施。
影響雷害的因素有很多,通過對輸電線路雷擊故障分析,準確判斷雷害故障的性質,必須掌握線路的運行狀況,結合現場地理情況進行綜合分析。
2防雷措施
輸電線路防雷設計的目的是提高線路的防雷性能,降低線路的雷擊跳閘率。在確定線路防雷的方式時,應綜合考慮系統的運行方式、線路電壓等級和重要程度、線路經過地區雷電活動的強弱、地形地貌特點、土壤電阻率等自然條件,并參考當地原有線路的運行經驗,經過技術經濟比較,采取合理的保護措施。除架設避雷線措施之外,還應注意做好以下幾項措施。
2.1接地裝置的處理
(1)高壓輸電線路耐雷水平隨桿塔接地電阻的增加而降低。電壓等級越高,降低桿塔接地電阻的作用將變得更加重要。對土壤電阻率較高地區,應選擇更換接地網形式和置換土壤的方法,達到降阻。在雷擊多發區域,主網線路桿塔接地電阻應保證小于10Ω,山區也應小于15Ω。在雷雨季節前,對雷擊多發區域線路應按規程要求的方法,進行桿塔接地電阻測量。
(2)接地裝置埋深,要求大干0.6m,采用增大截面的接地引下線,引下線(熱鍍鋅)表面要進行防腐處理。嚴格按照規程執行接地裝置的開挖檢查制度。重點檢查接地裝置的埋深、接頭和截面的測量,對不合格的及時進行處理。
(3)降低桿塔接地電阻,還需要確保架空地線、接地引下線、地網相互之間的良好連接。
2.2減小外邊相避雷線的保護角或者采用負角保護
在以往進行防雷設計時,只要求遵照規程規定滿足桿塔避雷線保護角的要求就行了,忽略了山坡對防雷保護角的影響,則造成了桿塔防雷保護角不能滿足防雷設計的實際要求,增加了線路閃絡次數,影響了電網安全運行。針對山區運行線路容易受繞擊的情況,建議采用有效屏蔽角公式計算校驗桿塔有效保護角,以便設計時針對保護角偏大情況采取相應措施減少雷電繞擊概率。
2.3加強絕緣和采用不平衡絕緣方式
在雷電活動強烈地段、大跨越高桿塔及進線段,應增加絕緣子片數。因為這些地方落雷機會較多,塔頂電位高,感應過電壓大,受繞擊的概率也較大,通過適當增加絕緣子片數,增大導線和避雷線間的距離,達到加強絕緣的目的。規程規定:全高超過40m的有地線桿塔,每增高10m應增加一片絕緣子。隨著同桿塔架設雙回線路的不斷出現,當普通的防雷措施不能滿足要求時,采用不平衡絕緣方式可避免雙回線路在遭受雷擊時同時跳閘。其原理是兩回路的絕緣子片數不同,遇到雷擊情況時,絕緣子片數少的一回路先閃絡,閃絡后的導線相當于避雷線,增加了對另一回路導線的耦合作用,提高了另一回路的耐雷水平,使之不發生閃絡,保持連續供電。
2.4安裝避雷器
避雷線的架設在一定程度上降低了導線上的感應過電壓,但不是完全消除,這就要求安裝避雷器來將雷電流泄放到大地,從而限制過電壓,保障輸電線路及設備的安全。未沿全線架設避雷線的35kV~110kV架空輸電線路,應在變電所1km~2km的進線段架設避雷線。此外,發電廠、變電所的35kV及以上電纜進線段,在電纜與架空線的連接處應裝設閥型避雷器,連接電纜段的1km架空線路應架設避雷線。
2.5裝設自動重合閘裝置
由于線路絕緣具有自恢復性能,大多數雷擊造成的閃絡事故在線路跳閘后能夠自行消除。因此,安裝自動重合閘裝置對于降低線路的雷擊事故率具有較好的效果。據統計,我國110kV及以上的高壓線路重合閘成功率達75%~95%,35kV及以下的線路成功率約為50%~80%。因此,各級電壓等級的線路均應盡量安裝自動重合閘裝置。
2.6加強雷電監測,消除設備隱患
雷擊閃絡中單相閃絡機會最多,閃絡地點也是一基桿塔比較多見,但有時也有連續幾基同時閃絡,或相隔幾基閃絡的。所以,故障巡查時,不能只查到一個故障點就結束故障巡視,而應把全區段查完。對110kV及以上輸電線路可以應用雷電定位系統,雷電定位系統是一種全自動實時雷電監測系統。當線路發生雷擊跳閘時,雷電定位系統能準確定位雷擊桿塔,幫助巡線人員及時查找故障點,大大節省巡線人員的故障巡視時間,使線路及時恢復供電,確保線路的供電可靠性。同時,通過對雷電定位系統的統計分析,能及時掌握雷電活動的規律、特性和有關數據,為做好防雷工作提供保證。
3結語
雷電活動是一種復雜的大自然現象,目前沒有哪種防雷措施能夠起到絕對防雷作用,即使比較成熟的防雷措施,也只能是相對降低雷害概率,減少線路雷擊跳閘次數。為大幅度降低或消除雷害事故,必須在實踐中探索,不斷積累運行經驗,完善輸電線路的防雷措施,采取更有效的防雷措施。